Dynamic Branch Prediction Using Neural Networks
نویسندگان
چکیده
Dynamic branch prediction in high-performance processors is a specific instance of a general Time Series Prediction problem that occurs in many areas of science. In contrast, most branch prediction research focuses on Two-Level Adaptive Branch Prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields f o r novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. Two neural networks are considered: a Learning Vector Quantisation (L VQ) Network and a Backpropagation Network. We demonstrate that a neural predictor can achieve misprediction rates comparable to conventional Two-level Adaptive Predictors and suggest that neural predictors merit further investigation.
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملTwo-level branch prediction using neural networks
Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel s...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملImproving Hardware Branch Predictors using Artificial Neural Networks
An abstract of the thesis of Andres Anibal Rustan for the Masters of Science in Electrical and Computer Engineering were presented November 1, 1999. Title: Improving Hardware Branch Predictors using Artificial Neural Networks This research shows that using an Artificial Neural Network as the hardware branch predictor of a microprocessor leads to performance as good as standard branch predictors...
متن کاملNeural Prediction of Buckling Capacity of Stiffened Cylindrical Shells
Estimation of the nonlinear buckling capacity of thin walled shells is one of the most important aspects of structural mechanics. In this study the axial buckling load of 132 stiffened shells were numerically calculated. The applicability of artificial neural networks (ANN) in predicting the buckling capacity of vertically stiffened shells was studied. To this end feed forward (FF) multi-layer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001